Salts Reference Sheet

Strong Acid $\xrightarrow{turns\ into\ a}$ Weaker Conjugate Base (not much effect on pH)

• Strong Base $\xrightarrow{turns\ into\ a}$ Weaker Conjugate Acid (not much effect on pH)

Weak Acid $\xrightarrow{turns into a}$ Stronger Conjugate Base (potential effect on pH)

Weak Base $\xrightarrow{turns\ into\ a}$ Stronger Conjugate Acid (potential effect on pH)

Ion from a Strong Acid $\xrightarrow{makes\ the\ solvn}$ Neutral (is a weak conj. base)

Ion from a Strong Base — → Neutral (is a weak conj. acid)

Ion from a Weak Acid $\xrightarrow{makes\ the\ solvn}$ Basic (is a strong conj. base)

- Ion from a Weak Base $\xrightarrow{makes\ the\ solvn}$ Acidic (is a strong conj. acid)
- Cation is a charged metal ion, and anion is from a strong acid Acidic metal hydrate + Neutral anion salt is acidic

- Neutral + Acidic = Acidic
- Neutral + Basic = Basic
- Neutral + Neutral = Neutral

Acidic + Basic = ? Use Ka and Kb to determine

Ka > Kb → Acidic

Ka < Kb → Basic

Ka = Kb → Neutral

 $Kw = Ka \times Kb$

 $Kw = 1.0 \times 10^{-14}$ (if at 25 °C, may be different if not at 25 °C)

If you are looking for the Ka of an acidic conjugate ion, use Kw and the Kb of the base it came from

$$K_{acidic\ conj.\ ion} = \frac{K_{w}}{K_{b\ (of\ the\ base\ that\ the\ ion\ came\ from)}}$$

If you are looking for the Kb of a basic conjugate ion, use Kw and the Ka of the acid it came from

$$K_{basic\ conj.\ ion} = \frac{K_w}{K_a\ (of\ the\ acid\ that\ the\ ion\ came\ from)}$$

Salts Reference Sheet

7 Strong Acids (H ⁺) All other acids are weak		8 Strong Bases (OH ⁻) All other bases are weak	
Hydrochloric acid	HCI	Lithium hydroxide	LiOH
Hydrobromic acid	HBr	Sodium hydroxide	NaOH
Hydroiodic	HI	Potassium hydroxide	KOH
Perchloric acid	HClO₄	Rubidium hydroxide	RbOH
Chloric acid	HClO₃	Cesium hydroxide	CsOH
Nitric acid	HNO ₃	Calcium hydroxide	Ca(OH) ₂
Sulfuric acid	H ₂ SO ₄	Strontium hydroxide	Sr(OH) ₂
		Barium hydroxide	Ba(OH) ₂

Dougherty Valley High School Chemistry — Weak Acid/Base Reference Sheet Acid Dissociation Constant (K_a) Values for Some Weak Acids

Weak Acid	Chemical Formula	K _a
acetic	HC ₂ H ₃ O ₂	1.8 x 10 ⁻⁵
arsenic	H ₃ AsO ₄	5.6 x 10 ⁻³
arsenous	HAsO ₂	6 x 10 ⁻¹⁰
ascorbic	H ₂ C ₆ H ₆ O ₆	8.0 x 10 ⁻⁵
benzoic	C ₆ H ₅ COOH	6.5 x 10 ⁻⁵
boric	H ₃ BO ₃	5.8 x 10 ⁻¹⁰
carbonic	H ₂ CO ₃	4.3 x 10 ⁻⁷
chloroacetic	CH₂CICOOH	1.4 x 10 ⁻³
citric	H ₃ C ₆ H ₅ O ₇	7.4 x 10 ⁻⁴
formic	HCOOH	1.8 x 10 ⁻⁴
hydrazoic	HN ₃	1.9 x 10 ⁻⁵
hydrocyanic	HCN	4.9 x 10 ⁻¹⁰
hydrofluoric	HF	6.8 x 10 ⁻⁴
hydrosulfuric	H ₂ S	5.7 x 10 ⁻⁸
hypobromous	HBrO	2 x 10 ⁻⁹
hypochlorous	HCIO	3.0 x 10 ⁻⁸
hydrogen peroxide	H ₂ O ₂	2.4 x 10 ⁻¹²
iodic	HIO ₃	1.7 x 10 ⁻¹
malonic	H ₂ C ₃ H ₂ O ₄	1.5 x 10 ⁻³
nitrous	HNO ₂	4.5 x 10 ⁻⁴
oxalic	H ₂ C ₂ O ₄	5.9 x 10 ⁻²
phosphoric	H₃PO₄	7.5 x 10 ⁻³
selenous	H ₂ SeO ₃	5.3 x 10 ⁻⁹
sulfurous	H ₂ SO ₃	1.7 x 10 ⁻²
tartaric	$H_2C_4H_4O_6$	1.0 x 10 ⁻³

Base Dissociation Constant (K_b) Values for Some Weak Bases

Weak Base	Chemical Formula	K _b
ammonia	NH₃	1.8 x 10 ⁻⁵
aniline	C ₆ H ₅ NH ₂	4.3 x 10 ⁻¹⁰
dimethylamine	(CH ₃) ₂ NH	5.4 x 10 ⁻⁴
ethylamine	$C_2H_5NH_2$	6.4 x 10 ⁻⁴
hydrazine	N_2H_4	1.3 x 10 ⁻⁶
hydroxylamine	HONH₂	1.1 x 10 ⁻⁸
methylamine	CH ₃ NH ₂	4.4 x 10 ⁻⁴
pyridine	C₅H₅N	1.7 x 10 ⁻⁹
trimethylamine	(CH₃)₃N	6.4 x 10 ⁻⁵